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Abstract

The recurrent direct solution of the 1-D heat conduction problem for a single straight fin and spine with power-law-

type temperature dependent heat transfer coefficient has been derived using inversion of the closed-form solution

obtained in the first part of the study. The expression with improving convergence to calculate accurately the di-

mensionless temperature excess Te at the fin tip for a given values of the fin parameter N and exponent n in heat transfer

equation has been obtained by a linearization method. Equation for the temperature excess distribution throughout the

fin has also been derived. The obtained formula for Te allows to calculate the fin base thermal conductance and aug-

mentation factor. Obtained expressions are seen to be simple and convenient for the engineering design of the fins and

finned surfaces. � 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Closed-form solution of 1-D heat conduction prob-

lem for a single straight fin and spine of constant cross-

section has been obtained in the first part of the study

[1]. This solution is expressed in the ordinary but not

special or hypergeometric functions. However, it has an

‘‘inverse’’ form (i.e., dependence of the fin convective–

conductive parameter N on the dimensionless fin tip

temperature excess Te and exponent n in the heat

transfer equation).

The objective of the present second part of the study

is to determine the direct dependence Te on N for given

n. A simple recurrent formula is derived by inversion of

the obtained closed-form expression. Its linearization

results in increase of the convergence rate. A generalized

expression for definite integral with respect to T de-

pending on bottom limit of integration only (for given n)

is found. The closed-form and recurrent expressions to

determine the temperature distribution along a fin are

derived on the basis of this generalized expression. The

range of applicability of the obtained solution and its

relative deviation from the data of the numerical inte-

gration are considered. In addition, special cases with

negative exponent n are investigated more thoroughly

taking into account the existence of the instability and

non-single valued solutions.

Equations intended for the evaluation of the fin

base thermal conductance and augmentation factor

(effectiveness) are obtained using the derived formula

for Te. Therefore, the results of this investigation make

possible fast and simple heat transfer evaluation of the

fins and finned surfaces. The examples of this type

evaluation are presented and their results are compared

with the theoretical and experimental data in the re-

lated literature.

2. Theoretical analysis

Closed-form inverse Eq. (18) from the first part of the

study [1] for given values of n and Te can be expressed as

follows:

N ¼ T�0:4n
e arcoshð1=TeÞ; ð1Þ
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where N ¼ l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a#n

bP=ðkAÞ
p

is the convective–conductive

parameter of a fin, Te ¼ #e=#b is the dimensionless

temperature excess at the fin tip. However, the value of

Te is usually unknown. The fin convective–conductive

parameter N and exponent n in the heat transfer equa-

tion are prescribed according to the statement of the

problem. Therefore, the task is to find an expression

intended for determination of Te at given values of N

and n. Such expression can be easily derived from Eq. (1)

directly in the following recurrent form:

Te ¼
1

coshðNT 0:4n
e Þ : ð2Þ

For n ¼ 0 this equation transforms into the well-known

formula

Te ¼
1

coshN
: ð3Þ

Unfortunately, Eq. (2) has a poor convergence. There-

fore, using the linearization method it has been trans-

formed into the following recurrent formula which

allows to get accurate solution after a small number of

iterations:

Te ¼
1 þ Az

cosh Z þ ðAz=TeÞ
; ð4Þ

where

Z ¼ NT 0:4n
e ; ð5Þ

and

Az ¼ 0:4nZ tanh Z: ð6Þ

Derivation of this formula is given in Appendix A. An

arbitrary value of Te in the range 0 < Te 6 1, for instance

Te ¼ 0:8 can be taken as a zeroth approximation in the

RHS of Eq. (4). 2–3 iterations are enough to obtain a

convergence between two successive iterations of Eq. (4)

with the accuracy better than 0.1%.

Plots of Te vs N for different n calculated by

the numerical integration of Eqs. (12) and (13) in the

first part [1] (solid lines) and by recurrent Eq. (4)

Nomenclature

A cross-section area of the fin ðm2Þ
Az dimensionless function defined in Eq. (6)

a given constant in Eq. (26) ðW m�2 K�ðnþ1ÞÞ
Ef fin augmentation factor (effectiveness)

Et finned tube augmentation factor

Gb dimensionless thermal conductance for the fin

base at given n

gb thermal conductance for the fin base at given n

ðW K�1Þ
G�

b dimensionless thermal conductance for the

fin base at given n corresponding to

N � and T �
e

Gb;0 dimensionless thermal conductance for the fin

base at n ¼ 0

Gd relative thermal conductance for the fin base

at given n

Gd;1 relative thermal conductance for the

‘‘asymptotical’’ fin base

h heat transfer coefficient ðW m�2 K�1Þ
hb heat transfer coefficient for the fin base

ðW m�2 K�1Þ
j iteration number in the solution of the

recurrent Eq. (4)

k thermal conductivity of the fin material

ðW m�1 K�1Þ
l fin height (m)

n given exponent in Eq. (26)

N dimensionless fin parameter defined under

Eq. (1)

Nþ fin parameter corresponding to Te ¼ 0 for

�16 n < 0

N � fin parameter corresponding to maximum of

the N vs Te curve at n < �1

P circumference of the fin cross-section area

(m)

t temperature of the fin (�C)

ta temperature of the ambient fluid surrounding

the fin (�C)

T dimensionless temperature excess of the fin

Te dimensionless temperature difference between

the fin tip and ambient fluid

T �
e dimensionless temperature difference between

the fin tip and ambient fluid corresponding to

N � for n < �1

x space coordinate (m)

X dimensionless space coordinate

Z dimensionless function defined in Eq. (5)

Greek symbols

D increment of Te in Eqs. (A.1) and (A.2)

d thickness of the fin (m)

# temperature difference between a fin and

ambient fluid (�C)

u relative deviation (%)

Subscripts and superscripts

a refers to the ambient fluid

b refers to the fin base ðX ¼ 1Þ
e refers to the fin tip ðX ¼ 0Þ
1 refers to the fin with infinite height

l ¼ 1
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(dot-centered open circles) are presented in Figs. 1(a)

and (b). It is seen that results calculated by simple

formulae (4)–(6) coincide closely with the numerical

ones (accuracy of the calculations using Eqs. (4)–(6) is

discussed in Section 2.1). As can be seen from Fig. 1(b)

the results of the calculation using the recurrent for-

mula (4) for negative �16 n < 0 are close to the nu-

merical ones for Te P 0:1–0:2 that corresponds to

N < Nþ. For negative �76 n < �1 a good agreement

can be seen between results of the approximate and

numerical calculations on the physically stable bran-

ches of the curves Te vs N . Physically unstable branches

of these curves can be calculated only for given n and

Te numerically and by the inverse formula (1). Nu-

merical results are plotted in Figs. 1(a) and (b) by short

dashed lines.

2.1. The relative accuracy of the recurrent formula

compared to results of the numerical integration

Relative deviation u of the Te vs N curves calculated

by recurrent Eqs. (4)–(6) and by numerical integration of

Eqs. (12) and (13) in [1] for given negative (dotted lines)

and positive values of n is presented in Fig. 2. Dashed

lines are used for 06 n6 0:6 and solid lines for 16 n6 7

accordingly. From this plot it can be seen that the

condition u < �1% holds in a wide range of Te both for

negative and positive n. Fig. 3 presents the level lines of

the relative deviation for u ¼ 0:5%, 1%, 2% and 4%.

These lines are plotted according to data presented in

Fig. 2 for practically most important range of positive

0 < n6 4 and N < 6.

2.2. The temperature distribution along a fin

According to the preceding results, the integral in

Eqs. (12) and (13) in the first part of the study [1] can be

expressed in a closed-form with respect to Te and n in

ordinary but not hypergeometric or other special func-

tion form in a wide range of Te for �76 n6 þ 7 (see Eq.

(1)). To determine the temperature distribution along a

fin for the given values of Te and n, Eq. (8) [1] can be

used. This equation includes the same integral as Eq.

(12) [1] but in other limits of integration (from Te to T

instead of from Te to 1). The first goal of this paragraph

is to obtain a general expression for evaluation of the

considered definite integral with an arbitrary upper

limit. To do this, it is suitable to introduce another

variable of integration. Denote n ¼ Te=T . Using the

Fig. 1. The set of curves Te vs N obtained by the numerical integration for positive and negative values of n (a) and in increased scale

for negative n (b). Solid lines correspond to stable or physically realizable states. Dashed lines relate to unstable states with negative

values of n. Dot-centered open circles represent data obtained with the help of formulae (4)–(6).

Fig. 2. Relative deviation u of the Te vs N curves calculated

with formulae (4)–(6) and by numerical integration for negative

(dotted lines) and positive values of n. Dashed lines are used for

06 n6 0:6 and solid lines for 16 n6 7.
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simple transformations of the integral in Eq. (12) [1], we

obtain the following expression:

N ¼
Z 1

Te

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 2Þ=2

p
dTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T nþ2 � T nþ2
e

p
¼ �

Z Te

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 2Þ=2

p
dn

n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTe=nÞnð1 � nnþ2Þ

q

¼
ffiffiffiffiffiffiffiffiffiffiffi
nþ 2

2T n
e

s Z 1

Te

dnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2�n � n4

p ; n 6¼ �2: ð7Þ

According to Eq. (1) the above expression is equal to

arcoshð1=TeÞ=T 0:4n
e . By equating these expressions we

obtain:

IðTe; nÞ ¼
Z 1

Te

dnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2�n � n4

p
¼ T n=2

e

ffiffiffiffiffiffiffiffiffiffiffi
2

nþ 2

r
arcoshð1=TeÞ

T 0:4n
e

: ð8Þ

An integral in LHS of Eq. (8) for given parameter n

depends on the bottom limit of integration Te only.

Therefore in general case denoting in the integral of Eq.

(8) the bottom limit of integration by s we get the fol-

lowing generalized expression:

Iðs; nÞ 

Z 1

s

dnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2�n � n4

p
¼ sn=2

ffiffiffiffiffiffiffiffiffiffiffi
2

nþ 2

r
arcoshð1=sÞ

s0:4n
: ð9Þ

So, the integral in Eq. (8) [1] can be expressed in a form:

X � N ¼
Z T

Te

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 2Þ=2

p
dTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T nþ2 � T nþ2
e

p
¼

ffiffiffiffiffiffiffiffiffiffiffi
nþ 2

2T n
e

s Z 1

Te=T

dnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2�n � n4

p
¼

ffiffiffiffiffiffiffiffiffiffiffi
nþ 2

2T n
e

s
IðTe=T ; nÞ; ð10Þ

where X ¼ x=l; x is a space coordinate. After Te is de-

termined using formulae (4)–(6) the temperature distri-

bution along a fin can be obtained by Eq. (10) in an

inverse form. An integral in RHS of Eq. (10) according

to Eq. (9), where s ¼ Te=T can be expressed as:

IðTe=T ; nÞ ¼
Z 1

Te=T

dnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2�n � n4

p
¼

ffiffiffiffiffiffiffiffiffiffiffi
2

nþ 2

r
Te

T

� �n=2
arcosh½ð1=ðTe=T Þ

ðTe=T Þ0:4n : ð11Þ

Substituting this equation in Eq. (10) we get a simple

expression for the temperature distribution along a fin in

an inverse form

X ¼ arcosh½1=ðTe=T Þ=½NT n=2ðTe=T Þ0:4n: ð12Þ

Eq. (12) can be easy transformed into the recurrent ex-

pression to determine T for given n and N with Te ob-

tained using Eqs. (4)–(6). As a result we get

T ¼ Te coshðNXT 0:4n
e T 0:1nÞ: ð13Þ

This equation has a sufficiently high rate of convergence

(it is enough 1–3 iterations for X 6 0:4 and 4–8 iterations

for 0:4 < X 6 0:9 and arbitrary values of n and N).

The temperature profiles throughout the fin with in-

sulated tip according to our evaluations using Eq. (12)

and Eqs. (4)–(6) to calculate Te are displayed in Fig. 4.

Comparison of the profiles evaluated in [5] using exact

hypergeometric formula for N ¼ 1 and n ¼ �0:25;
0:25; 2; 3 (dot-centered open circles) with our profiles

(solid lines) for corresponding values of n shows that

they practically coincide. Comparison between the re-

sults of our temperature profile evaluation using Eq. (13)

in combination with Eqs. (4)–(6) to calculate Te and

experimental data is presented in Fig. 5. The experi-

ments have been performed for cylindrical copper rods

in nucleate pool boiling with R113 [4] and in film pool

boiling with water [5]. The fin dimensions and values of

n and N parameters corresponding to these boiling

modes and dimensions are given in the caption of Fig. 5.

The details of experiments are available in [4,5]. It can be

seen that our analytical temperature profile evaluation

agrees well with the experimental data [4,5], in the latter

case for two values of the fin base temperature excess.

Fig. 3. Dependent of the fin parameter N on exponent n for

given relative deviation u of the function Te vs N calculated

using formulae (4)–(6) and by numerical integration for positive

0 < n6 4.
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3. Thermal conductance at the base of a fin

The dimensionless thermal conductance at the base

of a fin (the input thermal admittance according to

parametrization proposed by Kraus et al. [6]) Gb can be

determined by means of Eq. (10) ðn 6¼ �2Þ or Eq. (11)

ðn ¼ �2Þ in [1]. The fin tip temperature excess Te is

calculated using the recurrent formula (4) in combina-

tion with Eqs. (5) and (6). The results of such calculation

are shown in Fig. 6 by dot-centered open circles,

whereas the results of analogous calculation using the

values of Te determined by numerical integration are

presented in the same figure by solid lines (at stable

states for all n) or by dashed lines (for unstable states, at

n < �1Þ. The Gb calculation based on the values of Te

determined by Eqs. (4)–(6) or by the numerical inte-

gration agree well with each other. The analytical solu-

tion for Te at n ¼ 0 is expressed by Eq. (3). Substituting

this solution into Eq. (10) [1] we get the expression for

the fin base thermal conductance for uniform surface

heat transfer coefficient

Gb;0 ¼ N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ð1= coshNÞ2

q
¼ N tanhN : ð14Þ

Getting the quotient of the input fin thermal conduc-

tance (at base) for an arbitrary value of the exponent n

to that for n ¼ 0, the following expression for the rela-

tive fin base thermal conductance can be obtained:

Fig. 5. Comparison of the dimensionless temperature excess

profiles for the cylindrical copper rods with insulated tip pre-

dicted by formulae (13) and (4)–(6) (solid lines) with measured

ones. The dot-centered open diamonds present the experimental

data from [4] in nucleate pool boiling with R113 ðn ¼ 2Þ on the

rod of d ¼ 14 mm and l ¼ 66 mm, at #b ¼ 17:5 �C ðN ¼ 3:47Þ.
The dot-centered open circles and squares relate to the experi-

mental data from [5] in film boiling with water ðn ¼ �0:5Þ on

the rod of d ¼ 25 mm and l ¼ 85 mm for #b ¼ 140 �C ðN ¼
0:7Þ and #b ¼ 254 �C ðN ¼ 0:9Þ, respectively.

Fig. 6. The fin base thermal conductance Gb vs the fin pa-

rameter N for different values of the exponent n. Solid lines

correspond to the stable states and short dashed lines to the

physically not realizable states for n < �1. The top envelope of

the latter is shown by dot-dashed line. Dot-centered open circles

relate to analytical predictions obtained using Eqs. (10) and (11)

[1] for n 6¼ �2 and for n ¼ �2, respectively, in combination with

Eqs. (4)–(6) to calculate Te.

Fig. 4. Dimensionless temperature excess profiles for the fins

with insulated tip predicted using Eqs. (12) and (4)–(6) (solid

lines) or the exact hypergeometric formula in [5] (dot-centered

open circles). All profiles evaluated for the fin parameter N ¼ 1

and different values of exponent n.
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Gd ¼ Gb

Gb;0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2=ðnþ 2Þð1 � T nþ2

e Þ
p

tanhN
; n 6¼ �2; ð15Þ

Gd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnð1=TeÞ

p
tanhN

; n ¼ �2: ð16Þ

For so called asymptotical fins, i.e., fins with an infinite

height N ! 1, the value of tanhN ¼ 1, Te ¼ 0 and the

relative thermal conductance can be written as follows:

Gd;1 ¼
ffiffiffiffiffiffiffiffiffiffiffi

2

nþ 2

r
: ð17Þ

The dependence of Gd on the fin parameter N varying in

the range 0–2 for given negative and positive values of

the exponent n is shown in Figs. 7(a) and (b), respec-

tively. The results of numerical integration are displayed

by solid lines and analytical results obtained using for-

mulae (4)–(6) and (15), (16) by dot-centered open circles.

Close agreement is clearly seen for analytical and nu-

merical results in the whole range of N and n. Only

physically stable (realizable) branches of the curve are

shown in Fig. 7(a) for n < �1. The boundary of these

states is shown in Fig. 7(a) by a short dashed line. For

�16 n < 0 this boundary corresponds to Te ¼ 0. All

curves Gd vs N in Fig. 7(b) tend to the asymptotical

values of Gd ¼ Gd;1 defined by Eq. (17) for n > 0.

3.1. Distinctive features of the solution for n < 0

We have pointed out in [1] some features of the

curves N vs Te for n < 0 in the ranges �76 n6 � 1 and

�1 < n < 0. Consider now Fig. 1(b), where the depen-

dence Te vs N is displayed in a large scale for n6 0.

Here, as well as in Fig. 1(a), results obtained by nu-

merical integration of Eqs. (12) and (13) in [1] for

physically stable regions are shown by solid lines and the

data calculated using formulae (4)–(6) by dot-centered

open circles. The physically unstable branches of these

curves are plotted by short dashed lines. The unstable

portions appear for n < �1. A value T �
e ¼ 0 corresponds

to N � ¼
ffiffiffi
2

p
for n ¼ �1. In the region n < �1 the

‘‘critical’’ value of N � reduces and corresponding value

of T �
e increases with decreasing n. Plots of these critical

values and corresponding value of the fin base conduc-

tance G�
b against exponent n obtained using numerical

integration are shown in Fig. 8 by dot-centered open

circles. To simplify calculations, these relationships have

been approximated by the following analytical formulae:

T �
e ¼ 2m1 ; ð18Þ

N � ¼ 2m2 ; ð19Þ

G�
b ¼ 2m3 ; ð20Þ

where

m1 ¼ 1=ð0:4 þ 0:6nÞ; ð21Þ

m2 ¼ 0:5 � 41 þ 3:7112 � 213; ð22Þ

m3 ¼ 1 � 3:3491 þ 0:15412 � 0:1813; ð23Þ

1 ¼ logð�nÞ: ð24Þ

The approximation curves displayed in Fig. 8 by the

solid lines lie very close to the results of the numerical

integration.

Fig. 7. The relative dimensionless fin base conductance Gd vs the fin parameter N for negative (a) and positive (b) values of the ex-

ponent n calculated numerically (solid lines) and obtained by Eqs. (15) and (16) in accordance with Eqs. (4)–(6) (dot-centered open

circles). Short dashed curve corresponds to the limiting values of N and Gd for negative n.
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Consider now the analytical expressions for the

‘‘limiting’’ values of the fin parameter Nþ at the inter-

section of the curve Te vs N for given �16 n < 0 with

the abscissa axis ðTe ¼ 0Þ. Substituting zero value of Te

in the integrand and bottom limit of integration in

Eq. (12) [1], we get

Nþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðnþ 2Þ

p
jnj : ð25Þ

The plot of this function is shown on the right ordinate

axis in Fig. 9. Corresponding values of the relative fin

base conductance Gþ
d obtained with formulae (10) [1]

and (15) are shown on the left ordinate axis of the same

figure.

4. A numerical example

Let us consider a copper finned tube with longitudi-

nal straight fins of rectangular profile from the numeri-

cal example of €UUnal’s paper [7] (thermal conductivity of

the copper k ¼ 380 W m�1 K�1) with a single mode of

heat transfer from the outer surface of the tube and fins.

A nucleate pool boiling heat transfer to saturated R113

at atmospheric pressure is analyzed ðn ¼ 2Þ. Similarly to

[7], we assume that heat transfer equation has the form

h ¼ 12:1#2 ð26Þ

with the following assumptions:

• The wall superheat on the outer surface of the tube is

equal to that of the fin bases #b ¼ 13K and is uniform

over the tube circumference.

• The tube curvature under the fins is neglected and the

system is considered to be a plane wall with longitu-

dinal fins.

• The Biot number for any fin on the tube is much

smaller than 0.1, which justifies utilization of the 1-

D heat conduction model.

The geometrical dimensions of the analyzed finned tube

and fins are given in Table 1. The procedure of solution

will be considered in detail for the following input data:

• Fin thickness d ¼ 0:2 mm.

• Fin height l ¼ 2:5 mm.

• Distance between two successive fins on the outer

surface of a tube s ¼ 1 mm.

4.1. Solution procedure

(1) The heat transfer coefficient at the fin base can be

defined by above Eq. (26) for nucleate pool boiling of

R113 and given # ¼ 13 K

h ¼ 12:1#2 ¼ 12:1 � 132 ¼ 2044:9 W m�2 K�1:

(2) The quotient P=A for the longitudinal straight fin

of rectangular profile (constant thickness) is equal to

2=d. Therefore, according to Eq. (3) [1], the convective–

conductive fin parameter is determined as follows:

N ¼ l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hbP=ðkAÞ

p
¼ l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hb=ðkdÞ

p
¼ 2:5 � 10�3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 2044:9=ð380 � 0:2 � 10�3Þ

p
¼ 0:58:

(3) A dimensionless fin tip temperature difference Te

is recurrently determined for given n ¼ 2 and fin pa-

rameter N ¼ 0:58 obtained above through the use of

Eqs. (4)–(6). As zeroth approximation Te is assumed to

be 0.8. Then using Eqs. (5) and (6), we get

Z ¼ NT 0:4n
e ¼ 0:58 � 0:80:4�2 ¼ 0:58 � 0:80:8 ¼ 0:4852;

Fig. 9. The limiting values of Nþ and Gþ
d for different

�16 n6 0. The value of Te ¼ 0 corresponds to these values of

Nþ and Gþ
d .

Fig. 8. The limiting values of N �, T �
e and G�

d for different

�76 n6 � 1 corresponding to the maximum value of N in Fig.

1 for given n.
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Az ¼ 0:4nZ tanh Z ¼ 0:4 � 2 � 0:4852 tanh 0:4852

¼ 0:1748

and using Eq. (4) we get the first approximation

for Te

T ð1Þ
e ¼ ð1 þ AzÞ=½cosh Z þ ðAz=T ð0Þ

e Þ
¼ ð1 þ 0:1748Þ=½cosh 0:4852 þ ð0:1748=0:8Þ
¼ 0:8777:

Repeating the above procedure with a new value of

Te ¼ T ð1Þ
e ¼ 0:8777 in RHS of Eq. (4) we have

Z ¼ 0:58 � 0:87770:8 ¼ 0:5225;

Az ¼ 0:8 � 0:5225 � tanh 0:5225 ¼ 0:2005

and

T ð2Þ
e ¼ ð1 þ 0:2005Þ=½cosh 0:5225 þ ð0:2005=0:8777Þ

¼ 0:8775:

Fig. 10. Dependence of the finned tube augmentation factor Et on the distance between successive fins s for the fin thickness values

d ¼ 0:2 mm (a), 0.4 mm (b) and 0.6 mm (c) and fin height l ¼ 2:5 mm (1), 5 mm (2) and 7.5 mm (3) according to €UUnal’s results and our

estimation for the same parameter values (4).

Table 1

Finned tube augmentation factor Et for given values d; l and s

d (mm) l (mm) N Te Gb Ef Factor Et for s (mm)

1 2 3

0.2 2.5 0.58 0.8775 0.2616 19.445 4.074 2.677 2.153

5.0 1.16 0.7087 0.7092 26.358 5.226 3.305 2.585

7.5 1.74 0.5830 1.1570 28.667 5.611 3.515 2.729

0.4 2.5 0.41 0.9300 0.1455 10.815 3.804 2.636 2.155

5.0 0.82 0.8025 0.4436 16.486 5.425 3.581 2.822

7.5 1.23 0.6900 0.7648 18.950 6.129 3.992 3.112

0.6 2.5 0.33 0.9500 0.1020 7.583 3.469 2.519 2.097

5.0 0.67 0.8490 0.3284 12.205 5.202 3.586 2.867

7.5 1.01 0.7500 0.5875 14.558 6.084 4.129 3.260
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The third approximation gives T ð3Þ
e ¼ T ð2Þ

e ¼ 0:8775. This

value is assumed to be the final value of Te.

(4) A dimensionless thermal conductance of the fin

base can be found using Eq. (10) [1] and the obtained

value of Te

Gb ¼ N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2=ðnþ 2Þð1 � T nþ2

e Þ
q

¼ 0:58
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2=ð2 þ 2Þð1 � 0:87754Þ

p
¼ 0:2616:

(5) A fin augmentation factor (fin effectiveness ac-

cording to Gardner’s definition [2] and [3]) we can esti-

mate using following equation:

Ef ¼ gb=ðhbAÞ ¼ GbkA=ðlhbAÞ ¼ Gbk=ðlhbÞ
¼ 0:2616 � 380=ð2:5 � 10�3 � 2044:9Þ ¼ 19:45:

(6) A finned tube augmentation factor can be easy

expressed through a fin effectiveness Ef and a quotient

d=s by the following formula:

Et ¼ ½Efðd=sÞ þ 1=½ðd=sÞ þ 1
¼ ½19:45ð0:2=1Þ þ 1=½ð0:2=1Þ þ 1 ¼ 4:074:

The input data and results of the whole calculation are

collected in Table 1. Obtained values of the fin tube

augmentation factor are presented in Fig. 10 by dot-

centered open circles. The corresponding Et curves for

the same finned tube from €UUnal’s paper [7] are shown

also in this figure. Our rather simple procedure using the

ordinary functions is shown to give practically the same

results as much more complex €UUnal’s method where a

special function (Legendre’s incomplete normal elliptic

integral of the first kind) and corresponding table for

modular angle 45� are used.

5. Conclusions

(1) Closed-form solution Eq. (1) of 1-D heat con-

duction problem for a straight fin with power-

law-type temperature depending heat transfer coef-

ficient is inverted into the recurrent expression Eq.

(2) to determine Te for given n and N. The recurrent

formula (4) with very fast convergence is obtained

by way of linearization of Eq. (2).

(2) A generalized expression for definite integral

with respect to T depending on bottom limit of in-

tegration only (for given n) is found. It allows to

find the inverse and direct formulae (12) and (13)

for the temperature excess distribution throughout

the fin.

(3) All obtained formulae at n ¼ 0 transform to the

well-known formulae for the fins with a uniform

heat transfer coefficient.

(4) The approximations describing the limiting val-

ues of T �
e ; N � and G�

b are obtained for �76 n < �1.

(5) Dimensionless thermal conductance Gb at the

fin base is used in conjuction with obtained Eqs.

(4)–(6) for Te to calculate fins and finned surfaces.

(6) The relation Gd ¼ Gb=Gb;0 for the relative fin

base thermal conductance with any given value of

n to that for n ¼ 0 is introduced.

(7) Results of the evaluation based on the obtained

formulae agree well with experimental data [4] on

the pin fin temperature distribution in nucleate

pool boiling with R113 ðn ¼ 2Þ and [5] in film pool

boiling with water ðn ¼ �0:5Þ. They also agree well

with €UUnal’s theoretical determination [7] of the fin

tube augmentation factor in pool nucleate boiling

with R113 ðn ¼ 2Þ.
(8) The obtained results allow to solve accurately in

ordinary functions the different fin heat conduction

problems which arise in practice including design

and optimization of the fins and finned surfaces

with power-law-type dependence of the heat trans-

fer coefficient on the local temperature excess.
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Appendix A. The development procedure of the recurrent

formula Eq. (4)

Analysis of Eq. (2) shows that this recurrent expres-

sion converges very slowly or does not converge for

certain initial values of Te. But a simple linearization of

Eq. (2) allows to obtain a recurrent expression with very

fast convergence for arbitrary initial value of 0 < Te < 1.

Taking into account the denotation introduced in Eq.

(5) Z ’ NT 0:4n
e , Eq. (2) can be expressed in a form Te ¼

1= cosh Z. Let us denote an increment of Te by D. Then

Te þ D ¼ 1

cosh Z
� 0:4nZ tanh Z

Te cosh Z
D: ðA:1Þ

Taking into account the denotation introduced in Eq.

(6) Az ¼ 0:4nZ tanh Z we get

D ¼ 1 � Te cosh Z
cosh Z þ Az=Te

: ðA:2Þ

Substituting Eq. (A.2) in Eq. (A.1) and taking into ac-

count that in an incremental form Te;ðjþ1Þ ¼ Te;ðjÞ þ D,

where subscripts ðjÞ and ðjþ 1Þ denote the iteration

number, we finally get the following recurrent formula:
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Te;ðjþ1Þ ¼
1 þ Az

cosh Z þ Az=Te;ðjÞ
; ðA:3Þ

which is equivalent to Eq. (4).
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